КВАНТОВАЯ ОПТИКА, АТОМНАЯ И ЯДЕРНАЯ ФИЗИКА

Расчетно-графическая работа Вариант 23

Тема 1. Тепловое излучение

Одно из тел излучает в единицу времени с поверхности в 10 см^2 некоторое количество энергии. Второе тело излучает такую же энергию в единицу времени с поверхности 160 см^2 . Какова температура второго тела, если первое тело нагрето до $527^{0}C$? Какова длина волны, на которую приходится максимум энергии излучения первого тела? Оба тела считать абсолютно черными.

Тема 2. Фотоэффект

На сколько энергия покоящегося электрона меньше энергии кванта, соответствующего частоте $3.87 \cdot 10^{20} \Gamma u$?

Тема 3. Давление света и эффект Комптона

Фотон с энергией $1,025 \, MэВ$ рассеялся на первоначально покоившемся свободном электроне. Определить угол рассеяния фотона, если длина волны рассеянного фотона оказалась равной комптоновской длине волны $2,43 \, nm$.

Тема 4. Атом Бора. Рентгеновское излучение

Найти наибольшую длину волны K-серии рентгеновских лучей, испускаемых трубкой с антикатодом из серебра. Какую наименьшую разность потенциалов нужно приложить к рентгеновской трубке, для того, чтобы наблюдать эту линию?

Тема 5. Элементы квантовой механики

Неопределенность импульса α-частицы $\Delta p = 1,05 \cdot 10^{-28} \, \text{кг·м/c}$. Можно ли не использовать квантовую механику при рассмотрении движения α-частицы в области с характерным размером $1 \, \text{мкм}$?

Тема 6. Уравнение Шредингера

Частица находится в бесконечно глубоком одномерном потенциальном ящике длиной L на втором энергетическом уровне. На сколько вероятность нахождения частицы в области, ограниченной координатами $x_1 = 0$; $x_2 = L/4$ больше, чем в области $x_3 = L/2$; $x_4 = 3L/4$?

Тема 7. Радиоактивность

За время t = 8 суток распалось $\frac{3}{4}$ ядер из начального количества радиоактивного изотопа. Определить период полураспада.

Тема 8. Ядерные реакции. Энергия связи. Удельная энергия связи

Дано уравнение ядерной реакции. Определить, какая частица (ядро) X участвовала (участвовало) в ней. Найти энергию связи и удельную энергию связи указанного ядра ${}_ZY^A$.

$$_{5}B^{10} + X \rightarrow \alpha + _{4}Be^{8}; \quad _{19}K^{41}.$$