КВАНТОВАЯ ОПТИКА, АТОМНАЯ И ЯДЕРНАЯ ФИЗИКА

Расчетно-графическая работа Вариант 18

Тема 1. Тепловое излучение

На прозрачную пластинку падает лучистый поток Φ_0 . Коэффициент отражения равен 0,2. Поток, проходящий сквозь пластинку, в три раза больше, чем отраженный. Какова поглощательная способность пластинки?

Тема 2. Фотоэффект

Поток лучистой энергии, поглощенной фотоэлементом, равен 20 мкВт. При этом значение тока насыщения, полученного при снятии вольт-амперной характеристики фотоэлемента, составляет 12 мкА. Какова длина волны света, падающего на поверхность катода?

Тема 3. Давление света и эффект Комптона

Определить поверхностную плотность потока энергии излучения, падающего на зеркальную поверхность, если световое давление при перпендикулярном падении лучей равно $10 \ \text{мк} \Pi a$.

Тема 4. Атом Бора. Рентгеновское излучение

Определить скорость электронов, попадающих на антикатод рентгеновской трубки, если известно, что коротковолновая граница непрерывного рентгеновского спектра $\lambda_{min} = 0.0413 \ \text{нм}$.

Тема 5. Элементы квантовой механики

Определите длину волны де Бройля электрона, находящегося на четвертой орбите в атоме водорода.

Тема 6. Уравнение Шредингера

Частица находится в одномерной бесконечно глубокой потенциальной яме шириной L на первом энергетическом уровне. На сколько вероятность нахождения частицы в области, ограниченной координатами $x_1 = 0$ и $x_2 = L/4$ меньше, чем в области от $x_3 = 3L/8$ и $x_4 = 5L/8$? Провести соответствующие расчеты. Построить график зависимости $|\psi_n(x)|^2$ для первого энергетического уровня и указать рассматриваемые интервалы на чертеже.

Тема 7. Радиоактивность

В начальный момент времени активность некоторого радиоактивного препарата составила 650 распадов в минуту. Какова будет активность этого препарата по истечении половины его периода полураспада?

Тема 8. Ядерные реакции. Энергия связи. Удельная энергия связи

Дано уравнение ядерной реакции. Определить, какая частица (ядро) X участвовала (участвовало) в ней. Найти энергию связи и удельную энергию связи указанного ядра ${}_{Z}Y^{A}$.

$$_{9}F^{19} + p \rightarrow X + _{8}O^{16}; \quad _{9}F^{19}.$$